If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-28x-132=0
a = 25; b = -28; c = -132;
Δ = b2-4ac
Δ = -282-4·25·(-132)
Δ = 13984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{13984}=\sqrt{16*874}=\sqrt{16}*\sqrt{874}=4\sqrt{874}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-4\sqrt{874}}{2*25}=\frac{28-4\sqrt{874}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+4\sqrt{874}}{2*25}=\frac{28+4\sqrt{874}}{50} $
| 3⋅1=f72 −5 | | t^2+10t+15=0 | | 3x+4x+5x=144 | | 18=-3/8u | | 1/2x(10x+8)=19 | | 4x+10+x=30 | | 6(t-2)-76=-162 | | 66÷r=6 | | 4(x-4)+2=3(x+1) | | 12(x^2)=192 | | 5p^2-3=0 | | 1c+4+2c=67 | | 3x(4x)=192 | | 1c+42c=67 | | 2v+17=45 | | 100÷i=4 | | 5x-7÷2-2x+7÷3=3x-14 | | 2(2.5)=3x(x+3x) | | 45=5v-10 | | 14=w/2-16 | | P-147=5,p= | | u+3.8=7.43 | | 3.3h-3=-1.2h | | w+1.34=3.58 | | 4|x+3|/3=8 | | v-3.8=9.5 | | 24x^2=1000x | | x(x)-2.5x=0 | | a+1.7=16 | | I2(x-1)=3(x+1) | | 4x-19+39=180 | | 2x/5x=6 |